Researcher Discovery: Breast Cancer Cells Hide from Immune Attack

 
Xiongbin Lu, Ph.D. and Xinna Zhang, Ph.D., Researchers at the Vera Bradley Foundation Center for Breast Cancer Research and the Indiana University Melvin and Bren Simon comprehensive Cancer Center

Xiongbin Lu, Ph.D. and Xinna Zhang, Ph.D., Researchers at the Vera Bradley Foundation Center for Breast Cancer Research and the Indiana University Melvin and Bren Simon comprehensive Cancer Center

 
 
 

IU cancer center researchers discover how breast cancer cells hide from immune attack

Researchers at the Vera Bradley Foundation Center for Breast Cancer Research and the Indiana University Melvin and Bren Simon comprehensive Cancer Center have identified how breast cancer cells hide from immune cells to stay alive. The discovery could lead to better immunotherapy treatment for patients.

Xinna Zhang, PhD, and colleagues found that when breast cancer cells have an increased level of a protein called MAL2 on the cell surface, the cancer cells can evade immune attacks and continue to grow. The findings are published this month in The Journal of Clinical Investigation and featured on the journal’s cover.

“Like other cancer cells, breast cancer cells present tumor-specific antigens on the cell membrane, which immune cells recognize so they can kill the tumor cells,” Zhang said. “But our study found that MAL2 can reduce the level of these antigens, so these tumor cells are protected and can no longer be recognized as a threat by these immune cells.”

The lead author of the study, Zhang is a member of the Vera Bradley Foundation Center for Breast Cancer Research and assistant professor of medical and molecular genetics at Indiana University School of Medicine.

Considered the future of cancer treatment, immunotherapy harnesses the body’s immune system to target and destroy cancer cells. Understanding how cancer cells avoid immune attacks could offer new ways to improve immunotherapy for patients, explained Xiongbin Lu, PhD, Vera Bradley Foundation Professor of Breast Cancer Innovation and cancer center researcher. 

“Current cancer immunotherapy has wonderful results in some patients, but more than 70% of breast cancer patients do not respond to cancer immunotherapy. One of the biggest reasons is that tumors develop a mechanism to evade the immune attacks.”

Xiongbin Lu, Ph.D.

The collaborative research team set out to answer key questions: How do breast cancer cells develop this immune evasion mechanism, and could targeting that action lead to improved immunotherapies?

Zhang and Lu turned to biomedical data researcher Chi Zhang, PhD, assistant professor of medical and molecular genetics at IU School of Medicine. Chi Zhang developed a computational method to analyze data sets from more than 1,000 breast cancer patients through The Cancer Genome Atlas. That analysis led researchers to MAL2; it showed that higher levels of MAL2 in breast cancer, and especially in triple-negative breast cancer (TNBC), was linked to poorer patient survival.

“Dr. Chi Zhang used his advanced computational tool to build a bridge that connects cancer genetics and cancer genomics with a clinical outcome,” Lu said. “We can analyze molecular features from thousands of breast tumor samples to identify potential targets for cancer immunotherapy. From that data, MAL2 was the top-ranked gene that we wanted to study.”

Xinna Zhang took that data to her lab to determine MAL2’s purpose in the cells, how it affects breast cancer cell growth and how it interacts with immune cells. Using breast cancer tissue samples from IU patients, cell models and animal models, she found that breast cancer cells express more MAL2 than normal cells. She also discovered that high levels of MAL2 significantly enhanced tumor growth, while inhibiting the protein can almost completely stop tumor growth.

In Lu’s lab, he used a three-dimensional, patient-derived model called an organoid to better understand how reducing MAL2 could improve patient outcomes.

“Tumor cells can evade immune attacks; with less MAL2, the cancer cells can be recognized and killed by the immune system,” Lu said. “MAL2 is a novel target. By identifying its function in cancer cells and cancer immunology, we now know its potential as a cancer immunology target.”

Researchers now are exploring ways these findings could be used to develop and improve breast cancer therapies.

Lu is co-leading a cancer immunotherapy program for triple negative breast cancer as part of the Indiana University Precision Health Initiative. Both Xinna Zhang and Chi Zhang are also involved in the initiative for developing novel breast cancer immunotherapy. The Precision Health Initiative, the first recipient of funding from the Indiana University Grand Challenges Program, is enhancing the prevention, treatment, and health outcomes of human diseases through a more precise analysis of genetic, developmental, behavioral and environmental factors that shape an individual’s health.

Additional authors are Bryan P. Schneider, MD, Yunlong Liu, PhD, and Sha Cao, PhD, of IU Simon Comprehensive Cancer Center; Yuanzhang Fang, PhD, Lifei Wang, Changlin Wan, Yifan Sun, Kevin Van der Jeught, PhD, Zhuolong Zhou, PhD, Tianhan Dong, Ka Man So, Tao Yu, PhD, Yujing Li, PhD, Haniyeh Eyvani, Austyn B. Colter, Edward Dong, George E. Sandusky, PhD, of IU School of Medicine; and Jin Wang, PhD, of Baylor College of Medicine.

This study was supported by the Vera Bradley Foundation for Breast Cancer Research, the American Cancer Society Institutional Research Grant, and the National Institutes of Health (R01CA203737 and R01CA206366).

SOURCE: Indiana School of Medicine

 
 

Press Contact

Vera Bradley Foundation
foundation@verabradley.com
260-207-5283


Kris Reese